Add Test1 of RTPS Reader

Test metatraffic behaviour of RTPS Reader.
Compiling and Passing.
This commit is contained in:
Greek 2021-02-18 14:44:43 +01:00
parent fa28997ec6
commit 1dc1d89f98
6 changed files with 757 additions and 67 deletions

View File

@ -0,0 +1,64 @@
onerror {resume}
quietly WaveActivateNextPane {} 0
add wave -noupdate -divider SYSTEM
add wave -noupdate /l0_rtps_reader_test1/uut/clk
add wave -noupdate /l0_rtps_reader_test1/uut/reset
add wave -noupdate -divider INPUT
add wave -noupdate /l0_rtps_reader_test1/uut/empty_meta
add wave -noupdate /l0_rtps_reader_test1/uut/rd_meta
add wave -noupdate /l0_rtps_reader_test1/uut/last_word_in_meta
add wave -noupdate -radix hexadecimal /l0_rtps_reader_test1/uut/data_in_meta
add wave -noupdate -divider OUTPUT
add wave -noupdate /l0_rtps_reader_test1/uut/start_hc
add wave -noupdate /l0_rtps_reader_test1/uut/opcode_hc
add wave -noupdate /l0_rtps_reader_test1/uut/ack_hc
add wave -noupdate /l0_rtps_reader_test1/uut/done_hc
add wave -noupdate -radix hexadecimal /l0_rtps_reader_test1/uut/data_out_hc
add wave -noupdate -divider {MAIN FSM}
add wave -noupdate /l0_rtps_reader_test1/uut/stage
add wave -noupdate /l0_rtps_reader_test1/uut/stage_next
add wave -noupdate /l0_rtps_reader_test1/uut/cnt
add wave -noupdate -divider {MEMORY FSM}
add wave -noupdate /l0_rtps_reader_test1/uut/mem_op_done
add wave -noupdate /l0_rtps_reader_test1/uut/mem_op_start
add wave -noupdate /l0_rtps_reader_test1/uut/mem_opcode
add wave -noupdate /l0_rtps_reader_test1/uut/mem_stage
add wave -noupdate /l0_rtps_reader_test1/uut/mem_stage_next
add wave -noupdate /l0_rtps_reader_test1/uut/mem_cnt
add wave -noupdate /l0_rtps_reader_test1/uut/mem_pos
add wave -noupdate -radix unsigned /l0_rtps_reader_test1/uut/mem_addr_base
add wave -noupdate -expand -group MEM_CTRL -radix unsigned /l0_rtps_reader_test1/uut/mem_addr
add wave -noupdate -expand -group MEM_CTRL /l0_rtps_reader_test1/uut/mem_valid_in
add wave -noupdate -expand -group MEM_CTRL /l0_rtps_reader_test1/uut/mem_ready_in
add wave -noupdate -expand -group MEM_CTRL /l0_rtps_reader_test1/uut/mem_read
add wave -noupdate -expand -group MEM_CTRL -radix hexadecimal /l0_rtps_reader_test1/uut/mem_write_data
add wave -noupdate -expand -group MEM_CTRL /l0_rtps_reader_test1/uut/abort_read
add wave -noupdate -expand -group MEM_CTRL /l0_rtps_reader_test1/uut/mem_valid_out
add wave -noupdate -expand -group MEM_CTRL /l0_rtps_reader_test1/uut/mem_ready_out
add wave -noupdate -expand -group MEM_CTRL -radix hexadecimal /l0_rtps_reader_test1/uut/mem_read_data
add wave -noupdate -divider TESTBENCH
add wave -noupdate -group TESTBENCH /l0_rtps_reader_test1/start
add wave -noupdate -group TESTBENCH /l0_rtps_reader_test1/cnt_stim
add wave -noupdate -group TESTBENCH /l0_rtps_reader_test1/packet_sent
add wave -noupdate -group TESTBENCH /l0_rtps_reader_test1/mem_check_done
add wave -noupdate -group TESTBENCH /l0_rtps_reader_test1/stim_done
add wave -noupdate -group TESTBENCH /l0_rtps_reader_test1/test_done
add wave -noupdate -group TESTBENCH /l0_rtps_reader_test1/uut/idle_sig
TreeUpdate [SetDefaultTree]
WaveRestoreCursors {Begin {8325000 ps} 1} {Error {9725000 ps} 1} {Cursor {9175000 ps} 0}
quietly wave cursor active 3
configure wave -namecolwidth 150
configure wave -valuecolwidth 100
configure wave -justifyvalue left
configure wave -signalnamewidth 1
configure wave -snapdistance 10
configure wave -datasetprefix 0
configure wave -rowmargin 4
configure wave -childrowmargin 2
configure wave -gridoffset 0
configure wave -gridperiod 1
configure wave -griddelta 40
configure wave -timeline 0
configure wave -timelineunits ns
update
WaveRestoreZoom {8888200 ps} {9912200 ps}

View File

@ -0,0 +1,483 @@
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library osvvm; -- Utility Library
context osvvm.OsvvmContext;
use work.rtps_package.all;
use work.user_config.all;
use work.rtps_config_package.all;
use work.rtps_test_package.all;
-- This testbench tests the metatraffic operation behaviour of the RTPS Reader. (Remote Endpoint matching and memory behaviour)
-- This testbench is using external names to access the memory of the rtps_reader directly and check the contents at the supposed locations.
-- This testbench covers following:
-- * Mathing Endpoint
-- * Memory Full Behaviour
-- * Unmatching Endpoint
-- * Unmatching Participant
-- * Updating previously matched Endpoint
-- * Unknown Metatraffic Operation
entity L0_rtps_reader_test1 is
end entity;
architecture testbench of L0_rtps_reader_test1 is
-- *CONSTANT DECLARATION*
constant MAX_REMOTE_ENDPOINTS : natural := 3;
-- *TYPE DECLARATION*
type TEST_STAGE_TYPE is (IDLE, BUSY);
type TEST_RAM_TYPE is array (0 to (MAX_REMOTE_ENDPOINTS*WRITER_ENDPOINT_FRAME_SIZE_A)-1) of std_logic_vector(WORD_WIDTH-1 downto 0);
-- *SIGNAL DECLARATION*
signal clk, empty_user, empty_meta, rd_meta, last_word_in_meta : std_logic := '0';
signal reset : std_logic := '1';
signal data_in_meta, data_out_hc : std_logic_vector(WORD_WIDTH-1 downto 0) := (others => '0');
signal start_hc, ack_hc, done_hc, done_hc_delay : std_logic := '0';
signal opcode_hc : HISTORY_CACHE_OPCODE_TYPE := NOP;
signal ret_hc : HISTORY_CACHE_RESPONSE_TYPE := OK;
signal stim_stage : TEST_STAGE_TYPE := IDLE;
shared variable stimulus, reference : TEST_PACKET_TYPE := EMPTY_TEST_PACKET;
signal packet_sent : std_logic := '0';
signal cnt_stim : natural := 0;
signal start : std_logic := '0';
shared variable SB_out : osvvm.ScoreBoardPkg_slv.ScoreBoardPType;
shared variable SB_mem : work.ScoreBoardPkg_MemoryTest.ScoreBoardPType;
signal stim_done, mem_check_done, out_check_done, test_done : std_logic := '0';
-- *FUNCTION DECLARATION*
procedure wait_on_sent is
begin
wait until rising_edge(packet_sent);
end procedure;
procedure wait_on_mem_check is
begin
if (mem_check_done /= '1') then
wait until mem_check_done = '1';
end if;
end procedure;
procedure wait_on_completion is
begin
if (test_done /= '1') then
wait until test_done = '1';
end if;
end procedure;
begin
-- Unit Under Test
uut : entity work.rtps_reader(arch)
generic map (
ENTITYID => DEFAULT_READER_ENTITYID,
RELIABILTY_QOS => RELIABLE_RELIABILITY_QOS,
LIVELINESS_QOS => AUTOMATIC_LIVELINESS_QOS,
DURABILITY_QOS => VOLATILE_DURABILITY_QOS,
HEARTBEAT_RESPONSE_DELAY => DURATION_ZERO,
HEARTBEAT_SUPPRESSION_DELAY => DURATION_ZERO,
LEASE_DURATION => DURATION_INFINITE,
WITH_KEY => FALSE,
MAX_REMOTE_ENDPOINTS => MAX_REMOTE_ENDPOINTS
)
port map (
-- SYSTEM
clk => clk,
reset => reset,
time => TIME_ZERO,
empty_user => '1',
rd_user => open,
data_in_user => (others => '0'),
last_word_in_user => '0',
empty_meta => empty_meta or packet_sent,
rd_meta => rd_meta,
data_in_meta => data_in_meta,
last_word_in_meta => last_word_in_meta,
wr_rtps => open,
full_rtps => '0',
last_word_out_rtps => open,
data_out_rtps => open,
start_hc => start_hc,
opcode_hc => opcode_hc,
ack_hc => ack_hc,
done_hc => done_hc,
ret_hc => ret_hc,
data_out_hc => data_out_hc,
valid_out_hc => open,
ready_out_hc => '0',
last_word_out_hc => open
);
stimulus_prc : process
variable RV : RandomPType;
variable p0, p1, participant : PARTICIPANT_DATA_TYPE := DEFAULT_PARTICIPANT_DATA;
variable e0, e1, e2, e3, endpoint : ENDPOINT_DATA_TYPE := DEFAULT_ENDPOINT_DATA;
-- Wrapper to use procedure as function
impure function gen_rand_loc_2 return LOCATOR_TYPE is
variable ret : LOCATOR_TYPE := EMPTY_LOCATOR;
begin
gen_rand_loc(RV, ret);
return ret;
end function;
impure function gen_rand_guid_prefix return GUIDPREFIX_TYPE is
variable ret : GUIDPREFIX_TYPE;
begin
ret := (0 => RV.RandSlv(WORD_WIDTH), 1 => RV.RandSlv(WORD_WIDTH), 2 => RV.RandSlv(WORD_WIDTH));
return ret;
end function;
procedure start_test is
begin
start <= '1';
wait until rising_edge(clk);
start <= '0';
wait until rising_edge(clk);
end procedure;
begin
SetAlertLogName("rtps_reader - Level 0 - Memory Handling");
SetAlertEnable(FAILURE, TRUE);
SetAlertEnable(ERROR, TRUE);
SetAlertEnable(WARNING, TRUE);
SetLogEnable(DEBUG, FALSE);
SetLogEnable(PASSED, FALSE);
SetLogEnable(INFO, TRUE);
RV.InitSeed(RV'instance_name);
p0.guidPrefix := gen_rand_guid_prefix;
p1.guidPrefix := gen_rand_guid_prefix;
-- Endpoint 1
e0 := DEFAULT_ENDPOINT_DATA;
e0.participant := p0;
e0.entityid := RV.RandSlv(ENTITYID_WIDTH);
e0.unicastLocatorList := (numLocators => int(1,CDR_LONG_WIDTH), locator => (0 => gen_rand_loc_2, others => EMPTY_LOCATOR));
-- Endpoint 2
e1 := DEFAULT_ENDPOINT_DATA;
e1.participant := p0;
e1.entityid := RV.RandSlv(ENTITYID_WIDTH);
e1.unicastLocatorList := (numLocators => int(1,CDR_LONG_WIDTH), locator => (0 => gen_rand_loc_2, others => EMPTY_LOCATOR));
-- Endpoint 3
e2 := DEFAULT_ENDPOINT_DATA;
e2.participant := p1;
e2.entityid := RV.RandSlv(ENTITYID_WIDTH);
e2.unicastLocatorList := (numLocators => int(1,CDR_LONG_WIDTH), locator => (0 => gen_rand_loc_2, others => EMPTY_LOCATOR));
-- Endpoint 4
e3 := DEFAULT_ENDPOINT_DATA;
e3.participant := p1;
e3.entityid := RV.RandSlv(ENTITYID_WIDTH);
e3.unicastLocatorList := (numLocators => int(1,CDR_LONG_WIDTH), locator => (0 => gen_rand_loc_2, others => EMPTY_LOCATOR));
Log("Initiating Test", INFO);
stim_done <= '0';
start <= '0';
reset <= '1';
wait until rising_edge(clk);
wait until rising_edge(clk);
reset <= '0';
Log("Insert Endpoint 0 Participant 0", INFO);
endpoint := e0;
endpoint.nr := 0;
endpoint.match := MATCH;
gen_endpoint_match_frame(endpoint, stimulus);
SB_mem.Push(gen_writer_endpoint_mem_frame_a(endpoint));
start_test;
wait_on_sent;
stimulus := EMPTY_TEST_PACKET;
wait_on_mem_check;
-- MEMORY STATE [p0e0,0,0]
Log("Insert Endpoint 1 Participant 0", INFO);
endpoint := e1;
endpoint.nr := 1;
endpoint.match := MATCH;
gen_endpoint_match_frame(endpoint, stimulus);
SB_mem.Push(gen_writer_endpoint_mem_frame_a(endpoint));
start_test;
wait_on_sent;
stimulus := EMPTY_TEST_PACKET;
wait_on_mem_check;
-- MEMORY STATE [p0e0,p0e1,0]
Log("Insert Endpoint 2 Participant 1", INFO);
endpoint := e2;
endpoint.nr := 2;
endpoint.match := MATCH;
gen_endpoint_match_frame(endpoint, stimulus);
SB_mem.Push(gen_writer_endpoint_mem_frame_a(endpoint));
start_test;
wait_on_sent;
stimulus := EMPTY_TEST_PACKET;
wait_on_mem_check;
-- MEMORY STATE [p0e0,p0e1,p1e2]
Log("Ignore Endpoint 3 Participant 1 [Memory Full]", INFO);
endpoint := e3;
endpoint.match := MATCH;
gen_endpoint_match_frame(endpoint, stimulus);
-- Re-check Mem-State
endpoint := e0;
endpoint.nr := 0;
endpoint.match := MATCH;
SB_mem.Push(gen_writer_endpoint_mem_frame_a(endpoint));
endpoint := e1;
endpoint.nr := 1;
endpoint.match := MATCH;
SB_mem.Push(gen_writer_endpoint_mem_frame_a(endpoint));
endpoint := e2;
endpoint.nr := 2;
endpoint.match := MATCH;
SB_mem.Push(gen_writer_endpoint_mem_frame_a(endpoint));
start_test;
wait_on_sent;
stimulus := EMPTY_TEST_PACKET;
wait_on_mem_check;
-- MEMORY STATE [p0e0,p0e1,p1e3]
Log("Remove Endpoint 2 Participant 1", INFO);
endpoint := e2;
endpoint.nr := 2;
endpoint.match := UNMATCH;
gen_endpoint_match_frame(endpoint, stimulus);
SB_mem.Push(gen_writer_endpoint_mem_frame_a(endpoint));
SB_out.Push(std_logic_vector(to_unsigned(endpoint.nr, WORD_WIDTH)));
start_test;
wait_on_sent;
stimulus := EMPTY_TEST_PACKET;
wait_on_mem_check;
-- MEMORY STATE [p0e0,p0e1,0]
Log("Insert Endpoint 3 Participant 1", INFO);
endpoint := e3;
endpoint.nr := 2;
endpoint.match := MATCH;
gen_endpoint_match_frame(endpoint, stimulus);
SB_mem.Push(gen_writer_endpoint_mem_frame_a(endpoint));
start_test;
wait_on_sent;
stimulus := EMPTY_TEST_PACKET;
wait_on_mem_check;
-- MEMORY STATE [p0e0,p0e1,p1e3]
Log("Remove Participant 0", INFO);
participant := p0;
participant.match := UNMATCH;
gen_participant_match_frame(participant, stimulus);
-- Remove Endpoint 0
endpoint := e0;
endpoint.nr := 0;
endpoint.match := UNMATCH;
SB_mem.Push(gen_writer_endpoint_mem_frame_a(endpoint));
SB_out.Push(std_logic_vector(to_unsigned(endpoint.nr, WORD_WIDTH)));
-- Remove Endpoint 1
endpoint := e1;
endpoint.nr := 1;
endpoint.match := UNMATCH;
SB_mem.Push(gen_writer_endpoint_mem_frame_a(endpoint));
SB_out.Push(std_logic_vector(to_unsigned(endpoint.nr, WORD_WIDTH)));
start_test;
wait_on_sent;
stimulus := EMPTY_TEST_PACKET;
wait_on_mem_check;
-- MEMORY STATE [0,0,p1e3]
Log("Insert Endpoint 2 Participant 1", INFO);
endpoint := e2;
endpoint.nr := 0;
endpoint.match := MATCH;
gen_endpoint_match_frame(endpoint, stimulus);
SB_mem.Push(gen_writer_endpoint_mem_frame_a(endpoint));
start_test;
wait_on_sent;
stimulus := EMPTY_TEST_PACKET;
wait_on_mem_check;
-- MEMORY STATE [p1e2,0,p1e3]
Log("Unknown Metatraffic Operation followed by insertion of Enpoint 0 Participant 0", INFO);
for i in 0 to 9 loop
stimulus.data(i) := RV.RandSlv(WORD_WIDTH);
end loop;
stimulus.last(9) := '1';
stimulus.length := 10;
endpoint := e0;
endpoint.nr := 1;
endpoint.match := MATCH;
gen_endpoint_match_frame(endpoint, stimulus);
-- Re-check Mem-State
endpoint := e2;
endpoint.nr := 0;
endpoint.match := MATCH;
SB_mem.Push(gen_writer_endpoint_mem_frame_a(endpoint));
endpoint := e0;
endpoint.nr := 1;
endpoint.match := MATCH;
SB_mem.Push(gen_writer_endpoint_mem_frame_a(endpoint));
endpoint := e3;
endpoint.nr := 2;
endpoint.match := MATCH;
SB_mem.Push(gen_writer_endpoint_mem_frame_a(endpoint));
start_test;
wait_on_sent;
stimulus := EMPTY_TEST_PACKET;
wait_on_mem_check;
-- MEMORY STATE [p1e2,p0e0,p1e3]
Log("Update Endpoint 2 Participant 1", INFO);
endpoint := e2;
endpoint.nr := 0;
endpoint.match := MATCH;
endpoint.unicastLocatorList := (numLocators => int(1,CDR_LONG_WIDTH), locator => (0 => gen_rand_loc_2, others => EMPTY_LOCATOR));
gen_endpoint_match_frame(endpoint, stimulus);
SB_mem.Push(gen_writer_endpoint_mem_frame_a(endpoint));
start_test;
wait_on_sent;
stimulus := EMPTY_TEST_PACKET;
wait_on_mem_check;
-- MEMORY STATE [p1e2,p0e0,p1e3]
stim_done <= '1';
wait_on_completion;
TranscriptOpen(RESULTS_FILE, APPEND_MODE);
SetTranscriptMirror;
ReportAlerts;
TranscriptClose;
std.env.stop;
wait;
end process;
clock_prc : process
begin
clk <= '0';
wait for 25 ns;
clk <= '1';
wait for 25 ns;
end process;
in_empty_prc : process
begin
empty_meta <= '0';
wait until rd_meta = '1';
wait until rising_edge(clk);
empty_meta <= '1';
wait until rising_edge(clk);
end process;
alert_prc : process(all)
begin
if rising_edge(clk) then
alertif(empty_meta = '1' and rd_meta = '1', "Input FIFO read signal high while empty signal high", ERROR);
end if;
end process;
input_prc : process(all)
begin
data_in_meta <= stimulus.data(cnt_stim);
last_word_in_meta <= stimulus.last(cnt_stim);
if rising_edge(clk) then
if (reset = '1') then
cnt_stim <= 0;
stim_stage <= IDLE;
packet_sent <= '1';
else
case (stim_stage) is
when IDLE =>
if (start = '1' and stimulus.length /= 0) then
stim_stage <= BUSY;
cnt_stim <= 0;
packet_sent <= '0';
end if;
when BUSY =>
if (rd_meta = '1') then
if (cnt_stim = stimulus.length-1) then
stim_stage <= IDLE;
packet_sent <= '1';
else
cnt_stim <= cnt_stim + 1;
end if;
end if;
end case;
end if;
end if;
end process;
done_proc : process(clk)
begin
if rising_edge(clk) then
if (stim_done = '1' and SB_out.empty and SB_mem.empty) then
test_done <= '1';
else
test_done <= '0';
end if;
end if;
end process;
out_check_prc : process(all)
begin
if rising_edge(clk) then
done_hc <= done_hc_delay;
if (start_hc = '1') then
ack_hc <= '1';
done_hc_delay <= '1';
case (opcode_hc) is
when REMOVE_WRITER =>
SB_out.check(data_out_hc);
when others =>
Alert("Uknown HC Opcode", ERROR);
end case;
else
ack_hc <= '0';
done_hc_delay <= '0';
end if;
end if;
end process;
mem_check_prc : process
alias mem is <<signal uut.mem_ctrl_inst.ram_inst.mem : TEST_RAM_TYPE>>;
alias mem_op_done is <<signal uut.mem_op_done : std_logic>>;
alias idle_sig is <<signal uut.idle_sig : std_logic>>;
variable reference : TEST_WRITER_ENDPOINT_MEMORY_FRAME_TYPE_A;
begin
mem_check_done <= '0';
-- SAFEGUARD: (Prevent Fall-through Behavior)
if (reset /= '0') then
wait until reset = '0';
end if;
-- Wait for Packet to be sent
wait until rising_edge(packet_sent);
-- Wait for UUT IDLE state
if (idle_sig /= '1') then
wait until idle_sig = '1';
end if;
-- Wait for ongoing memory operation
if (mem_op_done /= '1') then
wait until mem_op_done = '1';
end if;
while (not SB_mem.empty) loop
SB_mem.Pop(reference);
for i in 0 to reference'length-1 loop
AffirmIf(?? (mem(reference(i).addr) ?= reference(i).data), "Address: " & integer'image(reference(i).addr) & " Received: " & to_hstring(mem(reference(i).addr)) & " Expected: " & to_hstring(reference(i).data));
end loop;
end loop;
-- Toggle High for one clock cycle
mem_check_done <= '1';
wait until rising_edge(clk);
end process;
watchdog : process
begin
wait for 1 ms;
Alert("Test timeout", FAILURE);
std.env.stop;
end process;
end architecture;

View File

@ -16,6 +16,7 @@ analyze ScoreBoard_builtin_endpoint.vhd
analyze ../rtps_handler.vhd analyze ../rtps_handler.vhd
analyze ../rtps_builtin_endpoint.vhd analyze ../rtps_builtin_endpoint.vhd
analyze ../rtps_out.vhd analyze ../rtps_out.vhd
analyze ../rtps_reader.vhd
analyze Level_0/L0_rtps_handler_test1.vhd analyze Level_0/L0_rtps_handler_test1.vhd
analyze Level_0/L0_rtps_handler_test2.vhd analyze Level_0/L0_rtps_handler_test2.vhd
analyze Level_0/L0_rtps_builtin_endpoint_test1.vhd analyze Level_0/L0_rtps_builtin_endpoint_test1.vhd
@ -27,7 +28,8 @@ analyze Level_0/L0_rtps_builtin_endpoint_test6.vhd
analyze Level_0/L0_rtps_builtin_endpoint_test7.vhd analyze Level_0/L0_rtps_builtin_endpoint_test7.vhd
analyze Level_0/L0_rtps_out_test1.vhd analyze Level_0/L0_rtps_out_test1.vhd
analyze Level_1/L1_rtps_builtin_endpoint_test1.vhd analyze Level_1/L1_rtps_builtin_endpoint_test1.vhd
#analyze Level_0/L0_mem_ctrl_test1.vhd analyze Level_0/L0_mem_ctrl_test1.vhd
analyze Level_0/L0_rtps_reader_test1.vhd
simulate L0_rtps_handler_test1 simulate L0_rtps_handler_test1
simulate L0_rtps_handler_test2 simulate L0_rtps_handler_test2
@ -40,4 +42,5 @@ simulate L0_rtps_builtin_endpoint_test6
simulate L0_rtps_builtin_endpoint_test7 simulate L0_rtps_builtin_endpoint_test7
simulate L0_rtps_out_test1 simulate L0_rtps_out_test1
simulate L1_rtps_builtin_endpoint_test1 simulate L1_rtps_builtin_endpoint_test1
#simulate L0_mem_ctrl_test1 simulate L0_mem_ctrl_test1
simulate L0_rtps_reader_test1

View File

@ -41,7 +41,7 @@ package rtps_config_package is
constant OPCODE_PARTICIPANT_UNMATCH : std_logic_vector(ENDPOINT_MATCH_OPCODE_WIDTH-1 downto 0) := x"55000002"; constant OPCODE_PARTICIPANT_UNMATCH : std_logic_vector(ENDPOINT_MATCH_OPCODE_WIDTH-1 downto 0) := x"55000002";
constant OPCODE_LIVELINESS_UPDATE : std_logic_vector(ENDPOINT_MATCH_OPCODE_WIDTH-1 downto 0) := x"55000003"; constant OPCODE_LIVELINESS_UPDATE : std_logic_vector(ENDPOINT_MATCH_OPCODE_WIDTH-1 downto 0) := x"55000003";
type HISTORY_CACHE_OPCODE_TYPE is (NOP, ADD_CACHE_CHANGE, GET_CACHE_CHANGE, ACK_CACHE_CHANGE, NACK_CACHE_CHANGE); type HISTORY_CACHE_OPCODE_TYPE is (NOP, ADD_CACHE_CHANGE, GET_CACHE_CHANGE, ACK_CACHE_CHANGE, NACK_CACHE_CHANGE, REMOVE_WRITER);
type KEY_GENERATOR_OPCODE_TYPE is (NOP, WRITE_PAYLOAD, READ_KEY, READ_SIZE); type KEY_GENERATOR_OPCODE_TYPE is (NOP, WRITE_PAYLOAD, READ_KEY, READ_SIZE);
type HISTORY_CACHE_RESPONSE_TYPE is (OK, REJECTED, INVALID, ERROR); type HISTORY_CACHE_RESPONSE_TYPE is (OK, REJECTED, INVALID, ERROR);

View File

@ -246,6 +246,8 @@ architecture arch of rtps_reader is
signal lease_deadline : TIME_TYPE := TIME_INVALID; signal lease_deadline : TIME_TYPE := TIME_INVALID;
-- Signal used to pass Response Deadlines from main to memory process -- Signal used to pass Response Deadlines from main to memory process
signal res_time : TIME_TYPE := TIME_INVALID; signal res_time : TIME_TYPE := TIME_INVALID;
-- Test signal used for testbench synchronisation
signal idle_sig : std_logic := '0';
-- *MEMORY PROCESS* -- *MEMORY PROCESS*
-- Memory FSM state -- Memory FSM state
@ -423,6 +425,7 @@ begin
last_word_out_hc <= '0'; last_word_out_hc <= '0';
wr_rtps <= '0'; wr_rtps <= '0';
last_word_out_rtps <= '0'; last_word_out_rtps <= '0';
idle_sig <= '0';
rd_guard := '0'; rd_guard := '0';
mem_field_flags <= (others => '0'); mem_field_flags <= (others => '0');
data_out_hc <= (others => '0'); data_out_hc <= (others => '0');
@ -437,6 +440,7 @@ begin
case (stage) is case (stage) is
when IDLE => when IDLE =>
idle_sig <= '1';
-- RESET -- RESET
lifespan_next <= TIME_INVALID; lifespan_next <= TIME_INVALID;
addr_next <= (others => '0'); addr_next <= (others => '0');
@ -540,7 +544,7 @@ begin
end if; end if;
if (is_meta = '1' and (meta_opcode = OPCODE_PARTICIPANT_UNMATCH or (LIVELINESS_QOS /= MANUAL_BY_TOPIC_LIVELINESS_QOS and meta_opcode = OPCODE_LIVELINESS_UPDATE))) then if (is_meta = '1' and (meta_opcode = OPCODE_PARTICIPANT_UNMATCH or (LIVELINESS_QOS /= MANUAL_BY_TOPIC_LIVELINESS_QOS and meta_opcode = OPCODE_LIVELINESS_UPDATE))) then
assert (last_word_in_meta = '1') report "last_word_in_meta not set" severity FAILURE; --assert (last_word_in_meta = '1') report "last_word_in_meta not set" severity FAILURE;
-- DONE Parsing -- DONE Parsing
stage_next <= INITIATE_ENDPOINT_SEARCH; stage_next <= INITIATE_ENDPOINT_SEARCH;
else else
@ -554,7 +558,7 @@ begin
-- Input FIFO Guard -- Input FIFO Guard
if ((is_meta = '1' and empty_meta = '0') or (is_meta = '0' and empty_user = '0')) then if ((is_meta = '1' and empty_meta = '0') or (is_meta = '0' and empty_user = '0')) then
if (is_meta = '1') then if (is_meta = '1') then
assert (meta_opcode /= OPCODE_ENDPOINT_UNMATCH or (meta_opcode = OPCODE_ENDPOINT_UNMATCH and last_word_in_meta = '1')) report "last_word_in_meta not set" severity FAILURE; --assert (meta_opcode /= OPCODE_ENDPOINT_UNMATCH or (meta_opcode = OPCODE_ENDPOINT_UNMATCH and last_word_in_meta = '1')) report "last_word_in_meta not set" severity FAILURE;
rd_meta <= '1'; rd_meta <= '1';
guid_next(3) <= data_in_meta; guid_next(3) <= data_in_meta;
-- Memory Operation Guard -- Memory Operation Guard
@ -641,7 +645,7 @@ begin
addr_next <= data_in_meta; addr_next <= data_in_meta;
-- UDP Port -- UDP Port
when 1 => when 1 =>
assert (last_word_in_meta = '1') report "last_word_in_meta not set" severity FAILURE; --assert (last_word_in_meta = '1') report "last_word_in_meta not set" severity FAILURE;
portn_next <= data_in_meta(WORD_WIDTH-1 downto WORD_WIDTH-UDP_PORT_WIDTH); portn_next <= data_in_meta(WORD_WIDTH-1 downto WORD_WIDTH-UDP_PORT_WIDTH);
@ -698,6 +702,7 @@ begin
data_out_hc <= std_logic_vector(to_unsigned(mem_pos, WORD_WIDTH)); data_out_hc <= std_logic_vector(to_unsigned(mem_pos, WORD_WIDTH));
-- Wait for Operation Acknowledgement -- Wait for Operation Acknowledgement
if (ack_hc = '1') then if (ack_hc = '1') then
start_hc <= '0';
-- Remove Unmatched Remote Endpoint -- Remove Unmatched Remote Endpoint
mem_op_start <= '1'; mem_op_start <= '1';
mem_opcode <= REMOVE_ENDPOINT; mem_opcode <= REMOVE_ENDPOINT;
@ -721,17 +726,21 @@ begin
data_out_hc <= std_logic_vector(to_unsigned(mem_pos, WORD_WIDTH)); data_out_hc <= std_logic_vector(to_unsigned(mem_pos, WORD_WIDTH));
-- Wait for Operation Acknowledgement -- Wait for Operation Acknowledgement
if (ack_hc = '1') then if (ack_hc = '1') then
start_hc <= '0';
-- Remove Unmatched Remote Endpoint -- Remove Unmatched Remote Endpoint
mem_op_start <= '1'; mem_op_start <= '1';
mem_opcode <= REMOVE_ENDPOINT; mem_opcode <= REMOVE_ENDPOINT;
cnt_next <= cnt + 1;
end if; end if;
else
cnt_next <= cnt + 1;
end if; end if;
cnt_next <= 1;
end if; end if;
when 1 => when 1 =>
-- Continue Search -- Continue Search
mem_op_start <= '1'; mem_op_start <= '1';
mem_opcode <= GET_NEXT_ENDPOINT; mem_opcode <= GET_NEXT_ENDPOINT;
mem_field_flags <= EMF_GUIDPREFIX_FLAG;
cnt_next <= 0; cnt_next <= 0;
when others => when others =>
null; null;
@ -1199,6 +1208,7 @@ begin
opcode_hc <= ADD_CACHE_CHANGE; opcode_hc <= ADD_CACHE_CHANGE;
-- Wait until History Cache acknowledges request -- Wait until History Cache acknowledges request
if (ack_hc = '1') then if (ack_hc = '1') then
start_hc <= '0';
stage_next <= ADD_CACHE_CHANGE; stage_next <= ADD_CACHE_CHANGE;
cnt_next <= 0; cnt_next <= 0;
end if; end if;
@ -1591,12 +1601,15 @@ begin
rd_guard := '1'; rd_guard := '1';
end if; end if;
when SKIP_META_OPERATION => when SKIP_META_OPERATION =>
-- Skip-Read -- Input Guard
rd_meta <= '1'; if (empty_meta = '0') then
-- Skip-Read
rd_meta <= '1';
-- Exit Condition -- Exit Condition
if (last_word_in_meta = '1') then if (last_word_in_meta = '1') then
stage_next <= IDLE; stage_next <= IDLE;
end if;
end if; end if;
when others => when others =>
null; null;
@ -1696,15 +1709,15 @@ begin
mem_cnt_next <= 0; mem_cnt_next <= 0;
when UPDATE_ENDPOINT => when UPDATE_ENDPOINT =>
mem_stage_next <= UPDATE_ENDPOINT; mem_stage_next <= UPDATE_ENDPOINT;
if (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_field_flags,EMF_IPV4_ADDR_FLAG)) then if (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_field_flags,EMF_IPV4_ADDR_FLAG)) then
mem_cnt_next <= 0; mem_cnt_next <= 0;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_field_flags,EMF_UDP_PORT_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_field_flags,EMF_UDP_PORT_FLAG)) then
mem_cnt_next <= 1; mem_cnt_next <= 1;
elsif check_mask(mem_field_flags,EMF_NEXT_SEQ_NR_FLAG) then elsif check_mask(mem_field_flags,EMF_NEXT_SEQ_NR_FLAG) then
mem_cnt_next <= 2; mem_cnt_next <= 2;
elsif check_mask(mem_field_flags,EMF_LEASE_DEADLINE_FLAG) then elsif check_mask(mem_field_flags,EMF_LEASE_DEADLINE_FLAG) then
mem_cnt_next <= 4; mem_cnt_next <= 4;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_field_flags,EMF_RES_TIME_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_field_flags,EMF_RES_TIME_FLAG)) then
mem_cnt_next <= 6; mem_cnt_next <= 6;
else else
-- DONE -- DONE
@ -1737,15 +1750,15 @@ begin
mem_cnt_next <= 0; mem_cnt_next <= 0;
elsif check_mask(mem_field_flags,EMF_GUIDPREFIX_FLAG) then elsif check_mask(mem_field_flags,EMF_GUIDPREFIX_FLAG) then
mem_cnt_next <= 1; mem_cnt_next <= 1;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_field_flags,EMF_IPV4_ADDR_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_field_flags,EMF_IPV4_ADDR_FLAG)) then
mem_cnt_next <= 4; mem_cnt_next <= 4;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_field_flags,EMF_UDP_PORT_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_field_flags,EMF_UDP_PORT_FLAG)) then
mem_cnt_next <= 5; mem_cnt_next <= 5;
elsif check_mask(mem_field_flags,EMF_NEXT_SEQ_NR_FLAG) then elsif check_mask(mem_field_flags,EMF_NEXT_SEQ_NR_FLAG) then
mem_cnt_next <= 6; mem_cnt_next <= 6;
elsif check_mask(mem_field_flags,EMF_LEASE_DEADLINE_FLAG) then elsif check_mask(mem_field_flags,EMF_LEASE_DEADLINE_FLAG) then
mem_cnt_next <= 8; mem_cnt_next <= 8;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_field_flags,EMF_RES_TIME_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_field_flags,EMF_RES_TIME_FLAG)) then
mem_cnt_next <= 10; mem_cnt_next <= 10;
else else
-- DONE -- DONE
@ -1800,6 +1813,7 @@ begin
if (mem_valid_out = '1') then if (mem_valid_out = '1') then
-- No Match -- No Match
if (mem_read_data /= mem_endpoint_latch_data.guid(3)) then if (mem_read_data /= mem_endpoint_latch_data.guid(3)) then
abort_read <= '1';
-- Reached End of Memory, No Match -- Reached End of Memory, No Match
if (mem_addr_base = max_endpoint_addr) then if (mem_addr_base = max_endpoint_addr) then
mem_addr_base_next <= ENDPOINT_MEMORY_MAX_ADDRESS; --No match mem_addr_base_next <= ENDPOINT_MEMORY_MAX_ADDRESS; --No match
@ -1810,7 +1824,6 @@ begin
mem_addr_base_next <= mem_addr_base + ENDPOINT_FRAME_SIZE; mem_addr_base_next <= mem_addr_base + ENDPOINT_FRAME_SIZE;
mem_pos_next <= mem_pos + 1; mem_pos_next <= mem_pos + 1;
mem_cnt_next <= 0; mem_cnt_next <= 0;
abort_read <= '1';
end if; end if;
else else
mem_cnt_next <= mem_cnt + 1; mem_cnt_next <= mem_cnt + 1;
@ -1823,6 +1836,7 @@ begin
if (mem_valid_out = '1') then if (mem_valid_out = '1') then
-- No Match -- No Match
if (mem_read_data /= mem_endpoint_latch_data.guid(0)) then if (mem_read_data /= mem_endpoint_latch_data.guid(0)) then
abort_read <= '1';
-- Reached End of Memory, No Match -- Reached End of Memory, No Match
if (mem_addr_base = max_endpoint_addr) then if (mem_addr_base = max_endpoint_addr) then
mem_addr_base_next <= ENDPOINT_MEMORY_MAX_ADDRESS; --No match mem_addr_base_next <= ENDPOINT_MEMORY_MAX_ADDRESS; --No match
@ -1833,7 +1847,6 @@ begin
mem_addr_base_next <= mem_addr_base + ENDPOINT_FRAME_SIZE; mem_addr_base_next <= mem_addr_base + ENDPOINT_FRAME_SIZE;
mem_pos_next <= mem_pos + 1; mem_pos_next <= mem_pos + 1;
mem_cnt_next <= 0; mem_cnt_next <= 0;
abort_read <= '1';
end if; end if;
else else
mem_cnt_next <= mem_cnt + 1; mem_cnt_next <= mem_cnt + 1;
@ -1846,6 +1859,7 @@ begin
if (mem_valid_out = '1') then if (mem_valid_out = '1') then
-- No Match -- No Match
if (mem_read_data /= mem_endpoint_latch_data.guid(1)) then if (mem_read_data /= mem_endpoint_latch_data.guid(1)) then
abort_read <= '1';
-- Reached End of Memory, No Match -- Reached End of Memory, No Match
if (mem_addr_base = max_endpoint_addr) then if (mem_addr_base = max_endpoint_addr) then
mem_addr_base_next <= ENDPOINT_MEMORY_MAX_ADDRESS; --No match mem_addr_base_next <= ENDPOINT_MEMORY_MAX_ADDRESS; --No match
@ -1856,7 +1870,6 @@ begin
mem_addr_base_next <= mem_addr_base + ENDPOINT_FRAME_SIZE; mem_addr_base_next <= mem_addr_base + ENDPOINT_FRAME_SIZE;
mem_pos_next <= mem_pos + 1; mem_pos_next <= mem_pos + 1;
mem_cnt_next <= 0; mem_cnt_next <= 0;
abort_read <= '1';
end if; end if;
else else
mem_cnt_next <= mem_cnt + 1; mem_cnt_next <= mem_cnt + 1;
@ -1869,6 +1882,7 @@ begin
if (mem_valid_out = '1') then if (mem_valid_out = '1') then
-- No Match -- No Match
if (mem_read_data /= mem_endpoint_latch_data.guid(2)) then if (mem_read_data /= mem_endpoint_latch_data.guid(2)) then
abort_read <= '1';
-- Reached End of Memory, No Match -- Reached End of Memory, No Match
if (mem_addr_base = max_endpoint_addr) then if (mem_addr_base = max_endpoint_addr) then
mem_addr_base_next <= ENDPOINT_MEMORY_MAX_ADDRESS; --No match mem_addr_base_next <= ENDPOINT_MEMORY_MAX_ADDRESS; --No match
@ -1879,11 +1893,9 @@ begin
mem_addr_base_next <= mem_addr_base + ENDPOINT_FRAME_SIZE; mem_addr_base_next <= mem_addr_base + ENDPOINT_FRAME_SIZE;
mem_pos_next <= mem_pos + 1; mem_pos_next <= mem_pos + 1;
mem_cnt_next <= 0; mem_cnt_next <= 0;
abort_read <= '1';
end if; end if;
-- Match -- Match
else else
mem_addr_base_next <= mem_addr_base;
-- Fetch Endpoint Data -- Fetch Endpoint Data
mem_stage_next <= GET_ENDPOINT_DATA; mem_stage_next <= GET_ENDPOINT_DATA;
mem_endpoint_data_next <= ZERO_ENDPOINT_DATA; mem_endpoint_data_next <= ZERO_ENDPOINT_DATA;
@ -1891,15 +1903,15 @@ begin
mem_cnt_next <= 0; mem_cnt_next <= 0;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_GUIDPREFIX_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_GUIDPREFIX_FLAG) then
mem_cnt_next <= 1; mem_cnt_next <= 1;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_IPV4_ADDR_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_IPV4_ADDR_FLAG)) then
mem_cnt_next <= 4; mem_cnt_next <= 4;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then
mem_cnt_next <= 5; mem_cnt_next <= 5;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_NEXT_SEQ_NR_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_NEXT_SEQ_NR_FLAG) then
mem_cnt_next <= 6; mem_cnt_next <= 6;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then
mem_cnt_next <= 8; mem_cnt_next <= 8;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then
mem_cnt_next <= 10; mem_cnt_next <= 10;
else else
-- DONE -- DONE
@ -1922,15 +1934,15 @@ begin
if (mem_ready_in = '1') then if (mem_ready_in = '1') then
if check_mask(mem_endpoint_latch_data.field_flag,EMF_GUIDPREFIX_FLAG) then if check_mask(mem_endpoint_latch_data.field_flag,EMF_GUIDPREFIX_FLAG) then
mem_cnt_next <= 1; mem_cnt_next <= 1;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_IPV4_ADDR_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_IPV4_ADDR_FLAG)) then
mem_cnt_next <= 4; mem_cnt_next <= 4;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then
mem_cnt_next <= 5; mem_cnt_next <= 5;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_NEXT_SEQ_NR_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_NEXT_SEQ_NR_FLAG) then
mem_cnt_next <= 6; mem_cnt_next <= 6;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then
mem_cnt_next <= 8; mem_cnt_next <= 8;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then
mem_cnt_next <= 10; mem_cnt_next <= 10;
else else
mem_cnt_next <= 12; mem_cnt_next <= 12;
@ -1961,15 +1973,15 @@ begin
mem_read <= '1'; mem_read <= '1';
-- Memory Flow Control Guard -- Memory Flow Control Guard
if (mem_ready_in = '1') then if (mem_ready_in = '1') then
if (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_IPV4_ADDR_FLAG)) then if (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_IPV4_ADDR_FLAG)) then
mem_cnt_next <= 4; mem_cnt_next <= 4;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then
mem_cnt_next <= 5; mem_cnt_next <= 5;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_NEXT_SEQ_NR_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_NEXT_SEQ_NR_FLAG) then
mem_cnt_next <= 6; mem_cnt_next <= 6;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then
mem_cnt_next <= 8; mem_cnt_next <= 8;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then
mem_cnt_next <= 10; mem_cnt_next <= 10;
else else
if check_mask(mem_endpoint_latch_data.field_flag,EMF_ENTITYID_FLAG) then if check_mask(mem_endpoint_latch_data.field_flag,EMF_ENTITYID_FLAG) then
@ -1988,13 +2000,13 @@ begin
mem_read <= '1'; mem_read <= '1';
-- Memory Flow Control Guard -- Memory Flow Control Guard
if (mem_ready_in = '1') then if (mem_ready_in = '1') then
if (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then if (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then
mem_cnt_next <= 5; mem_cnt_next <= 5;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_NEXT_SEQ_NR_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_NEXT_SEQ_NR_FLAG) then
mem_cnt_next <= 6; mem_cnt_next <= 6;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then
mem_cnt_next <= 8; mem_cnt_next <= 8;
elsif ((RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS) and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then elsif ((RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS) and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then
mem_cnt_next <= 10; mem_cnt_next <= 10;
else else
if check_mask(mem_endpoint_latch_data.field_flag,EMF_ENTITYID_FLAG) then if check_mask(mem_endpoint_latch_data.field_flag,EMF_ENTITYID_FLAG) then
@ -2020,14 +2032,14 @@ begin
mem_cnt_next <= 6; mem_cnt_next <= 6;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then
mem_cnt_next <= 8; mem_cnt_next <= 8;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then
mem_cnt_next <= 10; mem_cnt_next <= 10;
else else
if check_mask(mem_endpoint_latch_data.field_flag,EMF_ENTITYID_FLAG) then if check_mask(mem_endpoint_latch_data.field_flag,EMF_ENTITYID_FLAG) then
mem_cnt_next <= 12; mem_cnt_next <= 12;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_GUIDPREFIX_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_GUIDPREFIX_FLAG) then
mem_cnt_next <= 13; mem_cnt_next <= 13;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_IPV4_ADDR_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_IPV4_ADDR_FLAG)) then
mem_cnt_next <= 16; mem_cnt_next <= 16;
else else
mem_cnt_next <= 17; mem_cnt_next <= 17;
@ -2053,16 +2065,16 @@ begin
if (mem_ready_in = '1') then if (mem_ready_in = '1') then
if check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then if check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then
mem_cnt_next <= 8; mem_cnt_next <= 8;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then
mem_cnt_next <= 10; mem_cnt_next <= 10;
else else
if check_mask(mem_endpoint_latch_data.field_flag,EMF_ENTITYID_FLAG) then if check_mask(mem_endpoint_latch_data.field_flag,EMF_ENTITYID_FLAG) then
mem_cnt_next <= 12; mem_cnt_next <= 12;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_GUIDPREFIX_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_GUIDPREFIX_FLAG) then
mem_cnt_next <= 13; mem_cnt_next <= 13;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_IPV4_ADDR_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_IPV4_ADDR_FLAG)) then
mem_cnt_next <= 16; mem_cnt_next <= 16;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then
mem_cnt_next <= 17; mem_cnt_next <= 17;
else else
mem_cnt_next <= 18; mem_cnt_next <= 18;
@ -2085,16 +2097,16 @@ begin
mem_read <= '1'; mem_read <= '1';
-- Memory Flow Control Guard -- Memory Flow Control Guard
if (mem_ready_in = '1') then if (mem_ready_in = '1') then
if (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then if (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then
mem_cnt_next <= 10; mem_cnt_next <= 10;
else else
if check_mask(mem_endpoint_latch_data.field_flag,EMF_ENTITYID_FLAG) then if check_mask(mem_endpoint_latch_data.field_flag,EMF_ENTITYID_FLAG) then
mem_cnt_next <= 12; mem_cnt_next <= 12;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_GUIDPREFIX_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_GUIDPREFIX_FLAG) then
mem_cnt_next <= 13; mem_cnt_next <= 13;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_IPV4_ADDR_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_IPV4_ADDR_FLAG)) then
mem_cnt_next <= 16; mem_cnt_next <= 16;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then
mem_cnt_next <= 17; mem_cnt_next <= 17;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_NEXT_SEQ_NR_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_NEXT_SEQ_NR_FLAG) then
mem_cnt_next <= 18; mem_cnt_next <= 18;
@ -2128,9 +2140,9 @@ begin
mem_cnt_next <= 12; mem_cnt_next <= 12;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_GUIDPREFIX_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_GUIDPREFIX_FLAG) then
mem_cnt_next <= 13; mem_cnt_next <= 13;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_IPV4_ADDR_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_IPV4_ADDR_FLAG)) then
mem_cnt_next <= 16; mem_cnt_next <= 16;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then
mem_cnt_next <= 17; mem_cnt_next <= 17;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_NEXT_SEQ_NR_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_NEXT_SEQ_NR_FLAG) then
mem_cnt_next <= 18; mem_cnt_next <= 18;
@ -2150,15 +2162,15 @@ begin
if check_mask(mem_endpoint_latch_data.field_flag,EMF_GUIDPREFIX_FLAG) then if check_mask(mem_endpoint_latch_data.field_flag,EMF_GUIDPREFIX_FLAG) then
mem_cnt_next <= 13; mem_cnt_next <= 13;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_IPV4_ADDR_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_IPV4_ADDR_FLAG)) then
mem_cnt_next <= 16; mem_cnt_next <= 16;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then
mem_cnt_next <= 17; mem_cnt_next <= 17;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_NEXT_SEQ_NR_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_NEXT_SEQ_NR_FLAG) then
mem_cnt_next <= 18; mem_cnt_next <= 18;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then
mem_cnt_next <= 20; mem_cnt_next <= 20;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then
mem_cnt_next <= 22; mem_cnt_next <= 22;
else else
-- DONE -- DONE
@ -2190,15 +2202,15 @@ begin
if (mem_valid_out = '1') then if (mem_valid_out = '1') then
mem_endpoint_data_next.guid(2) <= mem_read_data; mem_endpoint_data_next.guid(2) <= mem_read_data;
if (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_IPV4_ADDR_FLAG)) then if (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_IPV4_ADDR_FLAG)) then
mem_cnt_next <= 16; mem_cnt_next <= 16;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then
mem_cnt_next <= 17; mem_cnt_next <= 17;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_NEXT_SEQ_NR_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_NEXT_SEQ_NR_FLAG) then
mem_cnt_next <= 18; mem_cnt_next <= 18;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then
mem_cnt_next <= 20; mem_cnt_next <= 20;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then
mem_cnt_next <= 22; mem_cnt_next <= 22;
else else
-- DONE -- DONE
@ -2214,13 +2226,13 @@ begin
if (mem_valid_out = '1') then if (mem_valid_out = '1') then
mem_endpoint_data_next.addr <= mem_read_data; mem_endpoint_data_next.addr <= mem_read_data;
if (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then if (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then
mem_cnt_next <= 17; mem_cnt_next <= 17;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_NEXT_SEQ_NR_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_NEXT_SEQ_NR_FLAG) then
mem_cnt_next <= 18; mem_cnt_next <= 18;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then
mem_cnt_next <= 20; mem_cnt_next <= 20;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then
mem_cnt_next <= 22; mem_cnt_next <= 22;
else else
-- DONE -- DONE
@ -2241,7 +2253,7 @@ begin
mem_cnt_next <= 18; mem_cnt_next <= 18;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then
mem_cnt_next <= 20; mem_cnt_next <= 20;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then
mem_cnt_next <= 22; mem_cnt_next <= 22;
else else
-- DONE -- DONE
@ -2267,7 +2279,7 @@ begin
if check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then if check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then
mem_cnt_next <= 20; mem_cnt_next <= 20;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then
mem_cnt_next <= 22; mem_cnt_next <= 22;
else else
-- DONE -- DONE
@ -2290,7 +2302,7 @@ begin
if (mem_valid_out = '1') then if (mem_valid_out = '1') then
mem_endpoint_data_next.lease_deadline(1) <= unsigned(mem_read_data); mem_endpoint_data_next.lease_deadline(1) <= unsigned(mem_read_data);
if (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then if (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then
mem_cnt_next <= 22; mem_cnt_next <= 22;
else else
-- DONE -- DONE
@ -2456,13 +2468,13 @@ begin
mem_endpoint_data.addr <= mem_endpoint_latch_data.addr; mem_endpoint_data.addr <= mem_endpoint_latch_data.addr;
-- Memory Flow Control Guard -- Memory Flow Control Guard
if (mem_ready_in = '1') then if (mem_ready_in = '1') then
if (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then if (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then
mem_cnt_next <= 1; mem_cnt_next <= 1;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_NEXT_SEQ_NR_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_NEXT_SEQ_NR_FLAG) then
mem_cnt_next <= 2; mem_cnt_next <= 2;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then
mem_cnt_next <= 4; mem_cnt_next <= 4;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then
mem_cnt_next <= 6; mem_cnt_next <= 6;
else else
-- DONE -- DONE
@ -2484,7 +2496,7 @@ begin
mem_cnt_next <= 2; mem_cnt_next <= 2;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then
mem_cnt_next <= 4; mem_cnt_next <= 4;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then
mem_cnt_next <= 6; mem_cnt_next <= 6;
else else
-- DONE -- DONE
@ -2511,7 +2523,7 @@ begin
if (mem_ready_in = '1') then if (mem_ready_in = '1') then
if check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then if check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then
mem_cnt_next <= 4; mem_cnt_next <= 4;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then
mem_cnt_next <= 6; mem_cnt_next <= 6;
else else
-- DONE -- DONE
@ -2535,7 +2547,7 @@ begin
mem_endpoint_data.lease_deadline <= mem_endpoint_latch_data.lease_deadline; mem_endpoint_data.lease_deadline <= mem_endpoint_latch_data.lease_deadline;
-- Memory Flow Control Guard -- Memory Flow Control Guard
if (mem_ready_in = '1') then if (mem_ready_in = '1') then
if (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then if (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then
mem_cnt_next <= 6; mem_cnt_next <= 6;
else else
-- DONE -- DONE
@ -2675,7 +2687,6 @@ begin
last_addr_next <= mem_addr_base; last_addr_next <= mem_addr_base;
-- Continue Search -- Continue Search
mem_addr_base_next <= mem_addr_base + ENDPOINT_FRAME_SIZE; mem_addr_base_next <= mem_addr_base + ENDPOINT_FRAME_SIZE;
mem_pos_next <= mem_pos + 1;
mem_cnt_next <= 0; mem_cnt_next <= 0;
end if; end if;
-- Slot Empty -- Slot Empty
@ -2691,7 +2702,6 @@ begin
else else
-- Continue Search -- Continue Search
mem_addr_base_next <= mem_addr_base + ENDPOINT_FRAME_SIZE; mem_addr_base_next <= mem_addr_base + ENDPOINT_FRAME_SIZE;
mem_pos_next <= mem_pos + 1;
mem_cnt_next <= 0; mem_cnt_next <= 0;
end if; end if;
end if; end if;
@ -2726,15 +2736,15 @@ begin
mem_cnt_next <= 0; mem_cnt_next <= 0;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_GUIDPREFIX_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_GUIDPREFIX_FLAG) then
mem_cnt_next <= 1; mem_cnt_next <= 1;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_IPV4_ADDR_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_IPV4_ADDR_FLAG)) then
mem_cnt_next <= 4; mem_cnt_next <= 4;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_UDP_PORT_FLAG)) then
mem_cnt_next <= 5; mem_cnt_next <= 5;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_NEXT_SEQ_NR_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_NEXT_SEQ_NR_FLAG) then
mem_cnt_next <= 6; mem_cnt_next <= 6;
elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then elsif check_mask(mem_endpoint_latch_data.field_flag,EMF_LEASE_DEADLINE_FLAG) then
mem_cnt_next <= 8; mem_cnt_next <= 8;
elsif (RELIABILTY_QOS /= RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then elsif (RELIABILTY_QOS = RELIABLE_RELIABILITY_QOS and check_mask(mem_endpoint_latch_data.field_flag,EMF_RES_TIME_FLAG)) then
mem_cnt_next <= 10; mem_cnt_next <= 10;
else else
-- DONE -- DONE

View File

@ -15,6 +15,8 @@ package rtps_test_package is
constant RESULTS_FILE : string := "./Test_Results.txt"; constant RESULTS_FILE : string := "./Test_Results.txt";
constant PARTICIPANT_FRAME_SIZE : natural := 23; constant PARTICIPANT_FRAME_SIZE : natural := 23;
constant WRITER_ENDPOINT_FRAME_SIZE_A : natural := 12;
constant WRITER_ENDPOINT_FRAME_SIZE_B : natural := 8;
constant DEFAULT_GUIDPREFIX : GUIDPREFIX_TYPE; -- Deferred to Package Body constant DEFAULT_GUIDPREFIX : GUIDPREFIX_TYPE; -- Deferred to Package Body
constant DEFAULT_READER_ENTITYID : std_logic_vector(ENTITYID_WIDTH-1 downto 0); -- Deferred to Package Body constant DEFAULT_READER_ENTITYID : std_logic_vector(ENTITYID_WIDTH-1 downto 0); -- Deferred to Package Body
@ -39,6 +41,8 @@ package rtps_test_package is
type TEST_MEMORY_TYPE is array (natural range <>) of TEST_MEMORY_ELEMENT_TYPE; type TEST_MEMORY_TYPE is array (natural range <>) of TEST_MEMORY_ELEMENT_TYPE;
subtype TEST_PARTICIPANT_MEMORY_FRAME_TYPE is TEST_MEMORY_TYPE(0 to PARTICIPANT_FRAME_SIZE-1); subtype TEST_PARTICIPANT_MEMORY_FRAME_TYPE is TEST_MEMORY_TYPE(0 to PARTICIPANT_FRAME_SIZE-1);
subtype TEST_WRITER_ENDPOINT_MEMORY_FRAME_TYPE_A is TEST_MEMORY_TYPE(0 to WRITER_ENDPOINT_FRAME_SIZE_A-1);
subtype TEST_WRITER_ENDPOINT_MEMORY_FRAME_TYPE_B is TEST_MEMORY_TYPE(0 to WRITER_ENDPOINT_FRAME_SIZE_B-1);
constant LOCATOR_PORT_WIDTH : natural := CDR_LONG_WIDTH; constant LOCATOR_PORT_WIDTH : natural := CDR_LONG_WIDTH;
constant LOCATOR_ADDR_WIDTH : natural := 4*CDR_LONG_WIDTH; constant LOCATOR_ADDR_WIDTH : natural := 4*CDR_LONG_WIDTH;
@ -201,6 +205,7 @@ package rtps_test_package is
multicastLocatorList : LOCATOR_LIST_TYPE; multicastLocatorList : LOCATOR_LIST_TYPE;
max_size_serialized : std_logic_vector(CDR_LONG_WIDTH-1 downto 0); max_size_serialized : std_logic_vector(CDR_LONG_WIDTH-1 downto 0);
match : MATCH_TYPE; match : MATCH_TYPE;
nr : natural;
end record; end record;
constant DEFAULT_ENDPOINT_DATA : ENDPOINT_DATA_TYPE; -- Deferred to Package Body constant DEFAULT_ENDPOINT_DATA : ENDPOINT_DATA_TYPE; -- Deferred to Package Body
@ -222,6 +227,8 @@ package rtps_test_package is
procedure gen_participant_data( ref : in PARTICIPANT_DATA_TYPE; output : inout TEST_PACKET_TYPE); procedure gen_participant_data( ref : in PARTICIPANT_DATA_TYPE; output : inout TEST_PACKET_TYPE);
procedure gen_participant_data( ref : in PARTICIPANT_DATA_TYPE; output : inout TEST_PACKET_TYPE; pid : in std_logic_vector(PARAMETER_ID_WIDTH-1 downto 0); offset : in integer); procedure gen_participant_data( ref : in PARTICIPANT_DATA_TYPE; output : inout TEST_PACKET_TYPE; pid : in std_logic_vector(PARAMETER_ID_WIDTH-1 downto 0); offset : in integer);
function gen_participant_mem_frame (ref : PARTICIPANT_DATA_TYPE) return TEST_PARTICIPANT_MEMORY_FRAME_TYPE; function gen_participant_mem_frame (ref : PARTICIPANT_DATA_TYPE) return TEST_PARTICIPANT_MEMORY_FRAME_TYPE;
function gen_writer_endpoint_mem_frame_a (ref : ENDPOINT_DATA_TYPE) return TEST_WRITER_ENDPOINT_MEMORY_FRAME_TYPE_A;
function gen_writer_endpoint_mem_frame_b (ref : ENDPOINT_DATA_TYPE) return TEST_WRITER_ENDPOINT_MEMORY_FRAME_TYPE_B;
procedure gen_endpoint_data( ref : in ENDPOINT_DATA_TYPE; output : inout TEST_PACKET_TYPE); procedure gen_endpoint_data( ref : in ENDPOINT_DATA_TYPE; output : inout TEST_PACKET_TYPE);
procedure gen_endpoint_data( ref : in ENDPOINT_DATA_TYPE; output : inout TEST_PACKET_TYPE; pid : in std_logic_vector(PARAMETER_ID_WIDTH-1 downto 0); offset : in integer); procedure gen_endpoint_data( ref : in ENDPOINT_DATA_TYPE; output : inout TEST_PACKET_TYPE; pid : in std_logic_vector(PARAMETER_ID_WIDTH-1 downto 0); offset : in integer);
@ -474,7 +481,8 @@ package body rtps_test_package is
unicastLocatorList => EMPTY_LOCATOR_LIST, unicastLocatorList => EMPTY_LOCATOR_LIST,
multicastLocatorList => EMPTY_LOCATOR_LIST, multicastLocatorList => EMPTY_LOCATOR_LIST,
max_size_serialized => (others => '0'), max_size_serialized => (others => '0'),
match => MATCH match => MATCH,
nr => 0
); );
-- *PACKAGE INTERNAL HELPER FUNCTIONS* -- *PACKAGE INTERNAL HELPER FUNCTIONS*
@ -1357,6 +1365,126 @@ package body rtps_test_package is
return ret; return ret;
end function; end function;
function gen_writer_endpoint_mem_frame_a (ref : ENDPOINT_DATA_TYPE) return TEST_WRITER_ENDPOINT_MEMORY_FRAME_TYPE_A is
variable ret : TEST_WRITER_ENDPOINT_MEMORY_FRAME_TYPE_A;
variable start : natural;
variable user_loc : LOCATOR_TYPE;
begin
ret := (others => (addr => 0, data => (others => '0')));
-- Calculate Start Address
start := WRITER_ENDPOINT_FRAME_SIZE_A * ref.nr;
-- Fetch relevant Locators
user_loc := get_loc (ref);
for i in 0 to WRITER_ENDPOINT_FRAME_SIZE_A-1 loop
ret(i).addr := start + i;
case (i) is
-- Entity ID
when 0 =>
if (ref.match = MATCH) then
ret(i).data := ref.entityId;
else
ret(i).data := (others => '0');
end if;
-- GUID Prefix 1/3
when 1 =>
if (ref.match = MATCH) then
ret(i).data := ref.participant.guidPrefix(0);
else
ret(i).data := (others => '-');
end if;
-- GUID Prefix 2/3
when 2 =>
if (ref.match = MATCH) then
ret(i).data := ref.participant.guidPrefix(1);
else
ret(i).data := (others => '-');
end if;
-- GUID Prefix 3/3
when 3 =>
if (ref.match = MATCH) then
ret(i).data := ref.participant.guidPrefix(2);
else
ret(i).data := (others => '-');
end if;
-- IPv4 Address
when 4 =>
if (ref.match = MATCH) then
ret(i).data := user_loc.addr(IPv4_ADDRESS_WIDTH-1 downto 0);
else
ret(i).data := (others => '-');
end if;
-- UDP Port
when 5 =>
if (ref.match = MATCH) then
ret(i).data := user_loc.portn(UDP_PORT_WIDTH-1 downto 0) & (UDP_PORT_WIDTH-1 downto 0 => '0');
else
ret(i).data := (others => '-');
end if;
-- Other Fields Ignored
when others =>
ret(i).data := (others => '-');
end case;
end loop;
return ret;
end function;
function gen_writer_endpoint_mem_frame_b (ref : ENDPOINT_DATA_TYPE) return TEST_WRITER_ENDPOINT_MEMORY_FRAME_TYPE_B is
variable ret : TEST_WRITER_ENDPOINT_MEMORY_FRAME_TYPE_B;
variable start : natural;
variable user_loc : LOCATOR_TYPE;
begin
ret := (others => (addr => 0, data => (others => '0')));
-- Calculate Start Address
start := WRITER_ENDPOINT_FRAME_SIZE_B * ref.nr;
-- Fetch relevant Locators
user_loc := get_loc (ref);
for i in 0 to WRITER_ENDPOINT_FRAME_SIZE_B-1 loop
ret(i).addr := start + i;
case (i) is
-- Entity ID
when 0 =>
if (ref.match = MATCH) then
ret(i).data := ref.entityId;
else
ret(i).data := (others => '0');
end if;
-- GUID Prefix 1/3
when 1 =>
if (ref.match = MATCH) then
ret(i).data := ref.participant.guidPrefix(0);
else
ret(i).data := (others => '-');
end if;
-- GUID Prefix 2/3
when 2 =>
if (ref.match = MATCH) then
ret(i).data := ref.participant.guidPrefix(1);
else
ret(i).data := (others => '-');
end if;
-- GUID Prefix 3/3
when 3 =>
if (ref.match = MATCH) then
ret(i).data := ref.participant.guidPrefix(2);
else
ret(i).data := (others => '-');
end if;
-- Other Fields Ignored
when others =>
ret(i).data := (others => '-');
end case;
end loop;
return ret;
end function;
procedure gen_participant_match_frame( ref : in PARTICIPANT_DATA_TYPE; output : inout TEST_PACKET_TYPE) is procedure gen_participant_match_frame( ref : in PARTICIPANT_DATA_TYPE; output : inout TEST_PACKET_TYPE) is
begin begin
-- OPCODE -- OPCODE
@ -1936,6 +2064,7 @@ package body rtps_test_package is
ret_readers(i).expectsInlineQoS(0) := '1'; ret_readers(i).expectsInlineQoS(0) := '1';
ret_readers(i).participant := THIS_PARTICIPANT_DATA; ret_readers(i).participant := THIS_PARTICIPANT_DATA;
ret_readers(i).entityId := ENTITYID(i); ret_readers(i).entityId := ENTITYID(i);
ret_readers(i).nr := i;
end loop; end loop;
return ret_readers; return ret_readers;
else else
@ -1967,6 +2096,7 @@ package body rtps_test_package is
ret_writers(i-NUM_READERS).destination_order := ENDPOINT_DESTINATION_ORDER_QOS(i); ret_writers(i-NUM_READERS).destination_order := ENDPOINT_DESTINATION_ORDER_QOS(i);
ret_writers(i-NUM_READERS).participant := THIS_PARTICIPANT_DATA; ret_writers(i-NUM_READERS).participant := THIS_PARTICIPANT_DATA;
ret_writers(i-NUM_READERS).entityId := ENTITYID(i); ret_writers(i-NUM_READERS).entityId := ENTITYID(i);
ret_readers(i-NUM_READERS).nr := i;
end loop; end loop;
return ret_writers; return ret_writers;
end if; end if;