* Add rtps_out Entity

- Use round robin to select output from endpoints and generate the expected uniform RTPS system output
* Add rtps_out_test1
	- Compiling and Passing
This commit is contained in:
Greek 2020-12-02 14:21:27 +01:00
parent c1bb9a7bd2
commit f8debfb086
5 changed files with 696 additions and 11 deletions

50
sim/rtps_out_test1.do Normal file
View File

@ -0,0 +1,50 @@
onerror {resume}
quietly WaveActivateNextPane {} 0
add wave -noupdate -divider SYSTEM
add wave -noupdate /rtps_out_test1/uut/clk
add wave -noupdate /rtps_out_test1/uut/reset
add wave -noupdate -divider TESTBENCH
add wave -noupdate /rtps_out_test1/start
add wave -noupdate /rtps_out_test1/packet_sent
add wave -noupdate -divider INPUT
add wave -noupdate -radix hexadecimal /rtps_out_test1/uut/data_in
add wave -noupdate /rtps_out_test1/uut/last_word_in
add wave -noupdate /rtps_out_test1/uut/rd
add wave -noupdate /rtps_out_test1/uut/empty
add wave -noupdate -divider OUTPUT
add wave -noupdate -radix hexadecimal /rtps_out_test1/uut/data_out
add wave -noupdate /rtps_out_test1/uut/wr
add wave -noupdate /rtps_out_test1/uut/full
add wave -noupdate -divider {INPUT FSM}
add wave -noupdate /rtps_out_test1/uut/input_stage
add wave -noupdate /rtps_out_test1/uut/input_stage_next
add wave -noupdate /rtps_out_test1/uut/in_pntr
add wave -noupdate /rtps_out_test1/uut/selector
add wave -noupdate -radix unsigned /rtps_out_test1/uut/length
add wave -noupdate -divider {OUTPUT FSM}
add wave -noupdate /rtps_out_test1/uut/output_stage
add wave -noupdate /rtps_out_test1/uut/output_stage_next
add wave -noupdate /rtps_out_test1/uut/out_pntr
add wave -noupdate -radix unsigned /rtps_out_test1/uut/packet_end
add wave -noupdate -divider MISC
add wave -noupdate /rtps_out_test1/uut/filled
add wave -noupdate /rtps_out_test1/uut/reset_filled
add wave -noupdate /rtps_out_test1/uut/set_filled
TreeUpdate [SetDefaultTree]
WaveRestoreCursors {Error {2175000 ps} 1} {Cursor {12626 ps} 0}
quietly wave cursor active 1
configure wave -namecolwidth 150
configure wave -valuecolwidth 100
configure wave -justifyvalue left
configure wave -signalnamewidth 1
configure wave -snapdistance 10
configure wave -datasetprefix 0
configure wave -rowmargin 4
configure wave -childrowmargin 2
configure wave -gridoffset 0
configure wave -gridperiod 1
configure wave -griddelta 40
configure wave -timeline 0
configure wave -timelineunits ns
update
WaveRestoreZoom {1663 ns} {2687 ns}

View File

@ -0,0 +1,349 @@
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library osvvm; -- Utility Library
context osvvm.OsvvmContext;
use work.rtps_package.all;
use work.user_config.all;
use work.rtps_config_package.all;
use work.rtps_test_package.all;
-- This testbench tests the general behavior of the rtps_out entity. Following 3 tests are done in sequence:
-- TEST 1
-- Add 2 random sized packets to random input port t1. After t1 is beginning being processed add 2 random sized packets to a random input port t2 that is after the t1 input port,
-- and add 2 random sized packets to a random input port t3 that is before the t1 input port. The packets should come in order : t1p1, t2p1, t3p1, t1p2, t2p2, t3p2.
-- TEST 2
-- Add 4 packets with sizes 4-Bytes, 3-Bytes, 2-Bytes, and 1-Bytes respectively to the input port t1. Add a maximum size packet at input port t2, and a oversized (over maximum size)
-- at input port t3. The expected order should be: t1p1, t2p1.
-- Note that during the beginning of this test the UUT should be processing input port t3.
-- TEST 3
-- Add one random sized packet to each available input port. The expected order is: t1+1p1, t1+2p1,...,t1p1.
-- Note that during the beginning of this test the UUT should be processing input port t1.
entity rtps_out_test1 is
end entity;
architecture testbench of rtps_out_test1 is
-- *COMPONENT DECLARATION*
component rtps_out is
generic (
MAX_BUFFER_SIZE : natural := 65508/4
);
port (
clk : in std_logic;
reset : in std_logic;
data_in : in RTPS_OUT_DATA_TYPE;
last_word_in: in std_logic_vector(0 to NUM_ENDPOINTS);
rd : out std_logic_vector(0 to NUM_ENDPOINTS);
empty : in std_logic_vector(0 to NUM_ENDPOINTS);
data_out : out std_logic_vector(WORD_WIDTH-1 downto 0);
wr : out std_logic;
full : in std_logic
);
end component;
-- *CONSTANT DECLARATION*
constant MAX_SIZE : natural := 20;
-- *TYPE DECLARATION*
type TEST_STAGE_TYPE is (IDLE, BUSY);
type TEST_PACKET_ARRAY_TYPE is array (0 to NUM_ENDPOINTS) of TEST_PACKET_TYPE;
type TEST_STAGE_ARRAY_TYPE is array (0 to NUM_ENDPOINTS) of TEST_STAGE_TYPE;
type CNT_STIM_ARRAY_TYPE is array (0 to NUM_ENDPOINTS) of natural;
-- *SIGNAL DECLARATION*
signal clk, wr_sig, full : std_logic := '0';
signal reset : std_logic := '1';
signal data_out : std_logic_vector(WORD_WIDTH-1 downto 0) := (others => '0');
signal data_in : RTPS_OUT_DATA_TYPE := (others => (others => '0'));
signal last_word_in, rd_sig, empty : std_logic_vector(0 to NUM_ENDPOINTS) := (others => '0');
signal stim_stage : TEST_STAGE_ARRAY_TYPE := (others => IDLE);
shared variable reference : TEST_PACKET_TYPE := EMPTY_TEST_PACKET;
shared variable stimulus : TEST_PACKET_ARRAY_TYPE := (others => EMPTY_TEST_PACKET);
signal packet_sent : std_logic_vector(0 to NUM_ENDPOINTS) := (others => '0');
signal cnt_stim : CNT_STIM_ARRAY_TYPE := (others => 0);
signal start : std_logic := '0';
shared variable SB : osvvm.ScoreBoardPkg_slv.ScoreBoardPType;
signal stim_done, check_done : std_logic := '0';
-- *FUNCTION DECLARATION*
procedure push_reference(index : in natural; input : in TEST_PACKET_TYPE) is
variable tmp : natural := 0;
variable header_start : natural := 0;
variable packet_start : natural := input.length;
variable len : natural := 0;
begin
for i in 0 to input.length-1 loop
if (tmp = index) then
SB.Push(input.data(i));
-- Mark End of Header/Start of Packet
end if;
if (i = header_start and tmp = index) then
packet_start := header_start+3;
end if;
-- Calculate and Push Length
if (i = packet_start-1) then
-- Count until End of Current Packet
loop
len := len + 1;
if (input.last(len-1+packet_start) = '1') then
exit;
end if;
end loop;
SB.Push(std_logic_vector(to_unsigned(len, WORD_WIDTH)));
end if;
if (input.last(i) = '1') then
tmp := tmp + 1;
header_start := i+1;
end if;
end loop;
end procedure;
begin
empty <= packet_sent;
-- Unit Under Test
uut: rtps_out
generic map (
MAX_BUFFER_SIZE => MAX_SIZE-3
)
port map (
clk => clk,
reset => reset,
data_in => data_in,
last_word_in=> last_word_in,
rd => rd_sig,
empty => empty,
data_out => data_out,
wr => wr_sig,
full => full
);
stimulus_prc : process
variable RV : RandomPType;
variable t1, t2, t3 : natural := 0;
variable tmp : std_logic_vector(0 to NUM_ENDPOINTS) := (others => '0');
procedure gen_rand_packet(size : in natural; output : inout TEST_PACKET_TYPE) is
variable tmp : natural := 0;
begin
if (size = 0) then
tmp := RV.RandInt(4, MAX_SIZE-1);
else
tmp := size;
end if;
Log("Packet Size: " & to_string(tmp), DEBUG);
for i in 0 to tmp-1 loop
output.data(output.length) := RV.RandSlv(WORD_WIDTH);
Log("DATA: " & to_hstring(output.data(output.length)), DEBUG);
output.length := output.length + 1;
end loop;
output.last(output.length-1) := '1';
end procedure;
procedure start_test is
begin
start <= '1';
wait until rising_edge(clk);
start <= '0';
wait until rising_edge(clk);
end procedure;
begin
assert (NUM_ENDPOINTS >= 2) report "Testbench needs at least 2 Endpoints" severity FAILURE;
assert (MAX_SIZE > 4) report "MAX_SIZE has to be larger than 4" severity FAILURE;
SetAlertLogName("L0-rtps_out");
SetAlertEnable(FAILURE, TRUE);
SetAlertEnable(ERROR, TRUE);
SetAlertEnable(WARNING, TRUE);
SetLogEnable(DEBUG, FALSE);
SetLogEnable(PASSED, FALSE);
SetLogEnable(INFO, TRUE);
RV.InitSeed(RV'instance_name);
--
Log("Initiating Test", INFO);
stim_done <= '0';
start <= '0';
reset <= '1';
wait until rising_edge(clk);
wait until rising_edge(clk);
reset <= '0';
Log("Begin Test 1", INFO);
t1 := RV.RandInt(1, NUM_ENDPOINTS-1);
Log("T1: " & to_string(t1), DEBUG);
t2 := RV.RandInt(t1+1, NUM_ENDPOINTS);
Log("T2: " & to_string(t2), DEBUG);
t3 := RV.RandInt(0, t1-1);
Log("T3: " & to_string(t3), DEBUG);
-- Generate 2 Packets
gen_rand_packet(0, stimulus(t1));
gen_rand_packet(0, stimulus(t1));
-- Push T1 Packet 0
push_reference(0, stimulus(t1));
start_test;
-- Wait for UUT do reach t1
wait until rd_sig(t1) = '1';
-- Generate 2 Packets for T2 and T3
gen_rand_packet(0, stimulus(t2));
gen_rand_packet(0, stimulus(t2));
gen_rand_packet(0, stimulus(t3));
gen_rand_packet(0, stimulus(t3));
-- Push T2 Packet 0
push_reference(0, stimulus(t2));
-- Push T3 Packet 0
push_reference(0, stimulus(t3));
-- Push T1 Packet 1
push_reference(1, stimulus(t1));
-- Push T2 Packet 1
push_reference(1, stimulus(t2));
-- Push T3 Packet 1
push_reference(1, stimulus(t3));
start_test;
-- Wait until begining of t3 sending
tmp := (t3 => '0', others => '1');
wait on rd_sig until packet_sent = tmp and rd_sig = not tmp;
-- Reset Input
stimulus := (t3 => stimulus(t3), others => EMPTY_TEST_PACKET);
Log("Begin Test 2", INFO);
-- Min Valid Packet
gen_rand_packet(4, stimulus(t1));
push_reference(0, stimulus(t1));
-- MAX Valid Packet
gen_rand_packet(MAX_SIZE, stimulus(t2));
push_reference(0, stimulus(t2));
-- Invalid Packet (Over size)
gen_rand_packet(MAX_SIZE+1, stimulus(t3));
-- Invalid Packet [Packet too small]
gen_rand_packet(3, stimulus(t1));
gen_rand_packet(2, stimulus(t1));
gen_rand_packet(1, stimulus(t1));
start_test;
-- Wait until all but t1 sent
tmp := (t1 => '0', others => '1');
wait on rd_sig until packet_sent = tmp and rd_sig = not tmp;
-- reset Input
stimulus := (t1 => stimulus(t1), others => EMPTY_TEST_PACKET);
Log("Begin Test 3", INFO);
for i in 1 to NUM_ENDPOINTS+1 loop
t3 := (t1+i) mod (NUM_ENDPOINTS+1);
Log("Generate package for input port : " & to_string(t3), DEBUG);
gen_rand_packet(0, stimulus(t3));
if (t3 = t1) then
-- t1 has 4 Packets in Queue
push_reference(4, stimulus(t3));
else
push_reference(0, stimulus(t3));
end if;
end loop;
start_test;
-- Wait until all sent
wait on packet_sent until packet_sent(t1) = '1';
TranscriptOpen(RESULTS_FILE, APPEND_MODE);
SetTranscriptMirror;
stim_done <= '1';
wait until check_done = '1';
AlertIf(not SB.empty, "Incomplete test run");
ReportAlerts;
TranscriptClose;
std.env.stop;
wait;
end process;
clock_prc : process
begin
clk <= '0';
wait for 25 ns;
clk <= '1';
wait for 25 ns;
end process;
endpoint_full_prc : process
begin
full <= '0';
wait until wr_sig = '1';
wait until rising_edge(clk);
full <= '1';
wait until rising_edge(clk);
end process;
alert_prc : process(all)
begin
if rising_edge(clk) then
alertif((empty and rd_sig) /= (rd_sig'range => '0'), "Input FIFO read signal high while empty signal high", ERROR);
alertif((full and wr_sig) = '1', "Output FIFO write signal high while full signal high", ERROR);
end if;
end process;
input_prc_gen : for i in 0 to NUM_ENDPOINTS generate
begin
input_prc : process(all)
begin
data_in(i) <= stimulus(i).data(cnt_stim(i));
last_word_in(i) <= stimulus(i).last(cnt_stim(i));
if rising_edge(clk) then
if (reset = '1') then
cnt_stim(i) <= 0;
stim_stage(i) <= IDLE;
packet_sent(i) <= '1';
else
case (stim_stage(i)) is
when IDLE =>
if (start = '1' and stimulus(i).length /= 0) then
stim_stage(i) <= BUSY;
cnt_stim(i) <= 0;
packet_sent(i) <= '0';
end if;
when BUSY =>
if (rd_sig(i) = '1') then
if (cnt_stim(i) = stimulus(i).length-1) then
stim_stage(i) <= IDLE;
packet_sent(i) <= '1';
else
cnt_stim(i) <= cnt_stim(i) + 1;
end if;
end if;
end case;
end if;
end if;
end process;
end generate;
output_check_prc : process(all)
begin
check_done <= '0';
if rising_edge(clk) then
if (wr_sig = '1') then
SB.Check(data_out);
end if;
if (stim_done = '1' and SB.empty) then
check_done <= '1';
end if;
end if;
end process;
watchdog : process
begin
wait for 5 ms;
Alert("Test timeout", FAILURE);
std.env.stop;
end process;
end architecture;

View File

@ -10,6 +10,7 @@ analyze ../rtps_config_package.vhd
analyze ../rtps_test_package.vhd
analyze ../rtps_handler.vhd
analyze ../rtps_builtin_endpoint.vhd
analyze ../rtps_out.vhd
analyze Level_0/rtps_handler_test1.vhd
analyze Level_0/rtps_handler_test2.vhd
analyze test_ram.vhd
@ -20,11 +21,13 @@ analyze Level_0/rtps_builtin_endpoint_test2.vhd
analyze Level_0/rtps_builtin_endpoint_test3.vhd
analyze Level_0/rtps_builtin_endpoint_test4.vhd
analyze Level_0/rtps_builtin_endpoint_test5.vhd
analyze Level_0/rtps_out_test1.vhd
#simulate rtps_handler_test1
simulate rtps_handler_test2
#simulate rtps_handler_test2
#simulate rtps_builtin_endpoint_test1
#simulate rtps_builtin_endpoint_test2
#simulate rtps_builtin_endpoint_test3
#simulate rtps_builtin_endpoint_test4
#simulate rtps_builtin_endpoint_test5
simulate rtps_out_test1

View File

@ -85,6 +85,8 @@ package rtps_config_package is
constant READER_DEFAULT_QOS_MATCH : DEFAULT_QOS_MATCH_TYPE; -- Deferred to Package Body
constant WRITER_DEFAULT_QOS_MATCH : DEFAULT_QOS_MATCH_TYPE; -- Deferred to Package Body
type RTPS_OUT_DATA_TYPE is array (0 to NUM_ENDPOINTS) of std_logic_vector(WORD_WIDTH-1 downto 0);
-- Swap "data" to Big Endian representation.
function endian_swap(swap : std_logic; data : std_logic_vector) return std_logic_vector;
function endian_swap(swap : std_logic; data : unsigned) return unsigned;

View File

@ -2,29 +2,310 @@ library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.rtps_package.all;
use work.user_config.all;
use work.rtps_config_package.all;
entity rtps_out is
generic (
PIPELINE_STAGES : integer := 1;
DATA_WIDTH : integer := 16
MAX_BUFFER_SIZE : natural := 65508/4
);
port (
clk : in std_logic;
reset : in std_logic;
mode : in std_logic;
cap : in std_logic;
A : in std_logic_vector(DATA_WIDTH-1 downto 0);
B : in std_logic_vector(DATA_WIDTH-1 downto 0);
RES : out std_logic_vector(DATA_WIDTH-1 downto 0)
clk : in std_logic;
reset : in std_logic;
data_in : in RTPS_OUT_DATA_TYPE;
last_word_in: in std_logic_vector(0 to NUM_ENDPOINTS);
rd : out std_logic_vector(0 to NUM_ENDPOINTS);
empty : in std_logic_vector(0 to NUM_ENDPOINTS);
data_out : out std_logic_vector(WORD_WIDTH-1 downto 0);
wr : out std_logic;
full : in std_logic
);
end entity;
architecture arch of rtps_out is
-- *TYPE DECLARATION*
type BUFFER_TYPE is array (0 to MAX_BUFFER_SIZE-1) of std_logic_vector(WORD_WIDTH-1 downto 0);
type INPUT_STAGE_TYPE is (IDLE, SRC_ADDR_HEADER, DEST_ADDR_HEADER, PORT_HEADER, READ, SKIP);
type OUTPUT_STAGE_TYPE is (IDLE, SRC_ADDR_HEADER, DEST_ADDR_HEADER, PORT_HEADER, PACKET_LENGTH, WRITE);
-- *SIGNAL DECLARATION*
signal selector, selector_next : natural range 0 to NUM_ENDPOINTS := 0;
signal buff, buff_next : BUFFER_TYPE := (others => (others => '0'));
signal in_pntr, in_pntr_next : natural range 0 to MAX_BUFFER_SIZE := MAX_BUFFER_SIZE;
signal out_pntr, out_pntr_next : natural range 0 to MAX_BUFFER_SIZE := MAX_BUFFER_SIZE;
signal length, length_next : unsigned(WORD_WIDTH-1 downto 0) := (others => '0');
signal packet_end, packet_end_next : unsigned(WORD_WIDTH-1 downto 0) := (others => '0');
signal input_stage, input_stage_next : INPUT_STAGE_TYPE := IDLE;
signal output_stage, output_stage_next : OUTPUT_STAGE_TYPE := IDLE;
signal filled ,reset_filled, set_filled: std_logic := '0';
signal src_addr, src_addr_next : std_logic_vector(WORD_WIDTH-1 downto 0 ) := (others => '0');
signal dest_addr, dest_addr_next : std_logic_vector(WORD_WIDTH-1 downto 0 ) := (others => '0');
signal ports, ports_next : std_logic_vector(WORD_WIDTH-1 downto 0) := (others => '0');
begin
in_prc : process (all)
begin
-- DEFAULT
input_stage_next <= input_stage;
selector_next <= selector;
in_pntr_next <= in_pntr;
src_addr_next <= src_addr;
dest_addr_next <= dest_addr;
ports_next <= ports;
buff_next <= buff;
length_next <= length;
rd <= (others => '0');
set_filled <= '0';
case (input_stage) is
when IDLE =>
-- Currently Selected Input FIFO is empty
if (empty(selector) = '1') then
-- Select next input FIFO
if (selector = NUM_ENDPOINTS) then
selector_next <= 0;
else
selector_next <= selector + 1;
end if;
else
-- Wait until Output Pointer is beyond the Header
if (filled = '0' and out_pntr /= 0) then
-- Read from input FIFO
input_stage_next <= SRC_ADDR_HEADER;
in_pntr_next <= 0;
end if;
end if;
when SRC_ADDR_HEADER =>
-- Input FIFO Guard
if (empty(selector) = '0') then
rd(selector) <= '1';
src_addr_next <= data_in(selector);
input_stage_next<= DEST_ADDR_HEADER;
-- SANITY CHECK: Skip Packet if last word in before actual packet
if (last_word_in(selector) = '1') then
-- Skip
input_stage_next <= IDLE;
in_pntr_next <= MAX_BUFFER_SIZE;
-- Select next input FIFO
if (selector = NUM_ENDPOINTS) then
selector_next <= 0;
else
selector_next <= selector + 1;
end if;
end if;
end if;
when DEST_ADDR_HEADER =>
-- Input FIFO Guard
if (empty(selector) = '0') then
rd(selector) <= '1';
dest_addr_next <= data_in(selector);
input_stage_next<= PORT_HEADER;
-- SANITY CHECK: Skip Packet if last word in before actual packet
if (last_word_in(selector) = '1') then
-- Skip
input_stage_next <= IDLE;
in_pntr_next <= MAX_BUFFER_SIZE;
-- Select next input FIFO
if (selector = NUM_ENDPOINTS) then
selector_next <= 0;
else
selector_next <= selector + 1;
end if;
end if;
end if;
when PORT_HEADER =>
-- Input FIFO Guard
if (empty(selector) = '0') then
rd(selector) <= '1';
ports_next <= data_in(selector);
input_stage_next<= READ;
-- SANITY CHECK: Skip Packet if last word in before actual packet
if (last_word_in(selector) = '1') then
-- Skip
input_stage_next <= IDLE;
in_pntr_next <= MAX_BUFFER_SIZE;
-- Select next input FIFO
if (selector = NUM_ENDPOINTS) then
selector_next <= 0;
else
selector_next <= selector + 1;
end if;
end if;
end if;
when READ =>
-- Output pointer past our point (We can safely read into the Buffer)
if (out_pntr > in_pntr) then
-- Input FIFO Guard
if (empty(selector) = '0') then
rd(selector) <= '1';
buff_next(in_pntr) <= data_in(selector);
in_pntr_next <= in_pntr + 1;
-- Last Input Word
if (last_word_in(selector) = '1') then
-- Set Length
length_next <= to_unsigned(in_pntr, WORD_WIDTH);
-- Mark Buffer Ready for Output
set_filled <= '1';
-- DONE
input_stage_next <= IDLE;
in_pntr_next <= MAX_BUFFER_SIZE;
-- Select next input FIFO
if (selector = NUM_ENDPOINTS) then
selector_next <= 0;
else
selector_next <= selector + 1;
end if;
-- Overflow (Packet larger than buffer)
elsif (in_pntr = MAX_BUFFER_SIZE-1) then
-- SKIP PACKET
input_stage_next <= SKIP;
end if;
end if;
end if;
when SKIP =>
-- Input FIFO Guard
if (empty(selector) = '0') then
rd(selector) <= '1';
-- Last Input Word
if (last_word_in(selector) = '1') then
-- DONE
input_stage_next <= IDLE;
in_pntr_next <= MAX_BUFFER_SIZE;
-- Select next input FIFO
if (selector = NUM_ENDPOINTS) then
selector_next <= 0;
else
selector_next <= selector + 1;
end if;
end if;
end if;
when others =>
null;
end case;
end process;
out_prc : process (all)
begin
-- DEFAULT
output_stage_next <= output_stage;
out_pntr_next <= out_pntr;
wr <= '0';
data_out <= (others => '0');
packet_end_next <= packet_end;
reset_filled <= '0';
case (output_stage) is
when IDLE =>
-- Wait until Buffer is Ready
if (filled = '1') then
output_stage_next <= SRC_ADDR_HEADER;
out_pntr_next <= 0;
-- Mark Buffer as being processed
reset_filled <= '1';
end if;
when SRC_ADDR_HEADER =>
-- Output FIFO Guard
if (full = '0') then
wr <= '1';
data_out <= src_addr;
output_stage_next <= DEST_ADDR_HEADER;
end if;
when DEST_ADDR_HEADER =>
-- Output FIFO Guard
if (full = '0') then
wr <= '1';
data_out <= dest_addr;
output_stage_next <= PORT_HEADER;
end if;
when PORT_HEADER =>
-- Output FIFO Guard
if (full = '0') then
wr <= '1';
data_out <= ports;
output_stage_next <= PACKET_LENGTH;
end if;
when PACKET_LENGTH =>
-- Output FIFO Guard
if (full = '0') then
wr <= '1';
data_out <= std_logic_vector(length + 1);
packet_end_next <= length;
output_stage_next <= WRITE;
end if;
when WRITE =>
-- Output FIFO Guard
if (full = '0') then
wr <= '1';
out_pntr_next <= out_pntr + 1;
data_out <= buff(out_pntr);
if (out_pntr = packet_end) then
-- DONE
output_stage_next <= IDLE;
out_pntr_next <= MAX_BUFFER_SIZE;
end if;
end if;
when others =>
null;
end case;
end process;
filled_prc : process (all)
begin
if rising_edge(clk) then
if (reset = '1') then
filled <= '0';
else
-- NOTE: This condition should not be possible due to the additional bound checks of the input and output processes.
assert(not (reset_filled = '1' and set_filled = '1')) report "Both set and reset Flag set on same clock cycle" severity FAILURE;
if (reset_filled = '1') then
filled <= '0';
elsif (set_filled = '1') then
filled <= '1';
end if;
end if;
end if;
end process;
sync_prc : process(all)
begin
if rising_edge(clk) then
if (reset = '1') then
input_stage <= IDLE;
output_stage <= IDLE;
selector <= 0;
in_pntr <= MAX_BUFFER_SIZE;
out_pntr <= MAX_BUFFER_SIZE;
src_addr <= (others => '0');
dest_addr <= (others => '0');
ports <= (others => '0');
length <= (others => '0');
packet_end <= (others => '0');
buff <= (others => (others => '0'));
else
input_stage <= input_stage_next;
output_stage <= output_stage_next;
selector <= selector_next;
in_pntr <= in_pntr_next;
out_pntr <= out_pntr_next;
src_addr <= src_addr_next;
dest_addr <= dest_addr_next;
ports <= ports_next;
length <= length_next;
packet_end <= packet_end_next;
buff <= buff_next;
end if;
end if;
end process;
end architecture;